Assessing Glaucoma Risk Factors and Identifying Glaucoma Progression

Joseph Sowka, OD
Michael Chaglasian, OD

- Outline
- Diagnosing Glaucoma
- Risk Factors
- Ocular Perfusion Pressure
- Optic Nerve Examination
- The 5R’s

Glaucoma Treatment Decisions: Risk Assessment
- Risk Calculator
- Guide to Patient Management
- OHTS – EGPS Limitations?
- RF’s for Glaucoma:

- **OHTS Study and Corneal Thickness**
 - Thin: <555 µ High Risk
 - Average: 555-588 µ No change in Risk
 - Thick: >588 µ Low Risk

Ocular Perfusion Pressure: New Evidence
- Ocular Perfusion Pressure and Glaucoma Progression
- Definition and Calculation
- Lower IOP improves OPP
- Remains number 1 goal !!
- Measure blood pressure on your patients
- Higher systemic BP improves OPP, but you do not necessarily want to raise BP:
- Nocturnal Hypotension and OPP
- Avoiding IOP meds that LOWER systemic BP at night (beta blockers, alpha agonists) makes sense.
- Glaucoma Medications and Their Effects on OPP

Optic Disc Hemorrhages
- Appearance may precede NFL loss, notching, VF defect
- Associated with progressive VF defects in glaucoma or OHT (up to 20X greater risk); especially among females [Drance et al. AJO 2001]
- More frequent in NTG than COAG or OHT
Examples
Clinical Studies and Results

Corneal Hysteresis
- Corneal Hysteresis is the difference in the inward and outward pressure values obtained during the dynamic bi-directional applanation process employed in the Ocular Response Analyzer, as a result of viscous damping in the cornea.
- Corneal and Glaucoma
- Numerous studies, such as the Ocular Hypertension Treatment Study (OHTS) have found that corneal thickness is an independent indicator of glaucoma risk.
- More recent research has indicated that the Corneal Hysteresis measurement appears to be even more powerful in this regard.
 - Evidence from the literature.
 - Examples

Glaucoma Progression Possibilities: Event Analysis vs. Trend Analysis
- Progression can be categorized as event analysis or trend analysis
 - Event analysis- compares baseline to most recent data; change as dictated by criteria has occurred or not
 - Trend analysis looks at the significance of rate of change over time.
 - Identifies progression by looking at patient behavior over time.
 - Uses all data points and a linear regression formula
 - Weakness- progression is not necessarily linear
- Glaucoma progression rate is the most important determinant of therapy and future visual impairment
- Past progression rate is the most influential determiner of future progression rate
- Measuring rate of progression is difficult as it is hard to differentiate true change from variation in testing.

Risk Factors for Progression:
- IOP level
 - The most significant modifiable risk factor for glaucoma development and progression
- IOP fluctuation
 - Possibly indicates changing perfusion pressure and decreased autoregulatory ability
- Exfoliation
 - Higher IOP, worse disease, more difficult to control, noted in numerous studies in association with progression
- Central Corneal Thickness (CCT)
 - OHTS and many others point out that thin cornea a risk factor
- Disc hemorrhages
 - Patients with normal tension glaucoma, primary open angle glaucoma, ocular hypertension
- Anemia, posterior vitreous detachment, vascular occlusion can cause hemorrhages of the disc that are mistaken for glaucomatous disc hemorrhages
 - Ischemic or mechanical
 - Probable infarction of the blood supply to the ONH
 - Inferior, inferior temporal, superior, superior temporal regions of the disc most susceptible and account for virtually all true disc hemorrhages
 - Hemorrhages at other areas of the disc (nasal and temporal) tend to not be associated with glaucoma
 - Typically occurs where notches occur
 - Resides in the retinal nerve fiber layer
 - Not in the cup!
 - Small and contiguous with the neuroretinal rim
 - Can be recurrent and, if it recurs, it typically is in the same place on the disc each time
 - Precedes notching, NFL defect, field loss. Perhaps the earliest change in glaucoma (if it happens)
 - More common in patients with large IOP variations
 - Meaning is unclear – possibly indicates poor control of IOP?
 - Disc hemorrhages do not constitute a diagnosis of glaucoma nor a progression or conversion to glaucoma or an endpoint for any major glaucoma

- Time
 - Glaucoma is by nature a progressive disease and treatment likely only slows the progression
 - Given enough time, most will demonstrate progression and this is not a sign of treatment failure

- Ocular Perfusion Pressure (OPP)
 - The difference between systemic blood pressure and intraocular pressure.
 - A measure of retinal and optic nerve perfusion
 - Systolic Perfusion Pressure (SPP)
 - SPP = Systolic Blood Pressure – IOP
 - Diastolic Perfusion Pressure (DPP)
 - DPP = Diastolic Blood Pressure – IOP
 - Mean Perfusion Pressure (MPP)
 - MPP = Mean arterial pressure – IOP
 - Mean Arterial Pressure = 2/3 DBP + 1/3 SBP

- Baltimore Eye Survey
 - Lower OPP strongly associated with prevalence of POAG
 - Six-fold excess risk of having glaucomatous optic nerve damage in persons with lowest category of OPP

- The Egna-Neumarkt Study
 - Lower DPP associated with a higher risk of having glaucomatous optic nerve damage

- Proyecto Ver Study
- Persons with Diastolic Perfusion Pressure < 50 mmHg had a four-fold higher risk of having POAG compared to those with Diastolic Perfusion Pressure of 80 mmHg
- Los Angeles Latino Eye Study
 - Persons with Low Diastolic and Systolic perfusion pressures had a higher risk of having POAG
- Barbados Incidence Study
 - 4-year risk of developing glaucomatous optic nerve damage increased dramatically at lower
 - Systolic Perfusion Pressure 2.6 fold
 - Diastolic Perfusion Pressure 3.2 fold
 - Mean Perfusion Pressure 3.1 fold
 - 9-year risk of developing glaucomatous optic nerve damage increased at lower
 - Systolic Perfusion Pressure 2.0 fold
 - Diastolic Perfusion Pressure 2.1 fold
 - Mean Perfusion Pressure 2.6 fold

Patient Compliance
- Nearly 50% of patients show non-continuous use by 6 months after start of therapy
- Communication Skills and Information Exchange
 - How well the Doctor communicates the importance of compliance
- Choice of Medications and the treatment regimen
 - Managing side effects
 - Impact the diagnosis and medication has on one’s quality of life
- Situational and Environmental factors
 - Other diseases
 - Life events
 - Social support
- Assorted other factors
 - Cost
 - Insurance and formulary issues
 - Physical barriers
 - Drop instillation difficulties due to arthritis

Risk Factors for Progression: Summarizing What the Major Studies Tell Us
- Disc hemorrhage (NTGS, OHTS, EMGT)
 - NTGS, EMGT saw no difference with IOP reduction
- Fluctuation of IOP (AGIS)
 - Technically reported, but not accurate or accepted
- Thin cornea (EMGT, OHTS)
- Higher baseline IOP (EMGT, OHTS, AGIS)
 - Not CNTGS
- Exfoliation (EMGT)
- Cardiovascular disease (EMGT, NTGS)
- Lower OPP (EMGT)
- Older age (EMGT, AGIS)
 - not CNTGS

Judging progression

Progression may be measured by

- Functional change as indicated by visual field deterioration
- Structural change in the optic disc or retinal nerve fiber layer
- Progression can be categorized as event analysis or trend analysis
 - Event analysis- compares baseline to most recent data; change as dictated by criteria has occurred or not
 - Trend analysis looks at the significance of rate of change over time.
 - Identifies progression by looking at patient behavior over time.
 - Uses all data points and a linear regression formula
 - Main Weakness- progression is not necessarily linear
- Glaucoma progression rate is the most important determinant of therapy and future visual impairment
- Past progression rate is the most influential determiner of future progression rate
- Measuring rate of progression is difficult as it is hard to differentiate true change from variation in testing.

Structure change vs. Function change: Which comes first?

- Ocular Hypertension Treatment Study (OHTS)
 - Patients who converted to glaucoma
 - 55% had optic disc changes only
 - 35% had Visual field changes only
 - 10% had both
- Early Manifest Glaucoma Trial (EMGT)
 - Of the 136 patients who showed evidence of progression
 - 86% reached endpoint by Visual Field changes alone
 - 13% showed optic disc and visual field changes together
 - 1 patient showed optic disc change
- Structure and Function Evaluation Study (SAFE)
 - 479 eyes of 295 subjects
 - Ocular hypertension patients with normal visual fields
 - Followed for 4 or more years
 - Optic discs that appeared glaucomatous at baseline were more likely to show visual field progression
 - Suggests that structural change preceded functional change
 - These findings support the premise that a glaucomatous optic disk is predictive of the subsequent development of glaucomatous visual field loss

Combining Functional and Structural Measurement for Glaucoma Diagnosis and Determining Progression
• In reality, there are patients that show structural changes first in glaucoma (likely the majority) and others that show functional changes first.
• The combination of a functional test (visual field analysis) and a structural measurement (disc photograph or imaging device) allows for most accurate diagnosis as one alone is likely not enough.
• Importance and limitations of clinical assessment
 o Wide diversity of normal appearance
 o Potential overlap of non-glaucomatous and glaucomatous
• Clinical application of imaging
 o Diagnosis
 ▪ Normal vs. abnormal
 o Determination of progression or stability

Limitations of Functional Measurement
• Reliability and reproducibility biggest limiting factor
 o In the OHTS, an attempt was made to identify the occurrence of normal visual field test results following 2 vs. 3 consecutive, abnormal, reliable test results in the OHTS study
 ▪ A VF endpoint confirmed by 3 consecutive abnormal, reliable VF test results appears to have greater specificity and sensitivity than either 1 or 2 consecutive abnormal, reliable VF test results.
 • However, some eyes whose VF POAG endpoint was confirmed by 3 consecutive abnormal, reliable VF test results nonetheless had 1 or more normal tests on follow-up.
 o AGIS: In patients with advanced glaucoma, a single confirmatory test 6 months after a VF worsening indicates with at least 72% probability a persistent defect when the worsening is defined by at least 2 decibels of MD.
 ▪ When the number of confirmatory tests is increased from 1 to 2, the percentage of eyes that show a persistent defect increases from 72% to 84%.

• Ability to understand test
• Patient physical limitations to sit through long tests
• Significant damage must occur prior to measurable functional loss
• Subjective interpretation of results

Limitations of Structural Measurement
• Artifact in acquisition
 o motion, media, placement of measurement, operator skill
• Anatomy not consistent with normative database to which patient is being compared
 o severely tilted discs, extreme variations in disc size, high myopia
 o Very early damage
 ▪ acquired change has occurred but does not exceed the range of normal values
Advanced damage
- little value obtained from images from clearly end extensively abnormal optic nerves and retinal nerve fiber layer
- dynamic range of device is exceeded, abnormality is clear, values too low to be able to determine progression

Subjective interpretation of results

When to do each and when to repeat?
- Visual fields more often due to long term fluctuation and learning curve
- Annually if stable, more often if unstable
- Photographs and imaging at time of initial diagnosis and then annually thereafter

When not to do each and when not to repeat?
- Poor initial quality
- Photographs and imaging not helpful in very advanced disease
 - No information to be gained

Functional Testing: Visual Fields

New Technologies for Measuring Progression: Visual Field Guided Progression Analysis (GPA)
- *Glaucoma Progression Analysis*
- Used with Humphrey HFA II-i perimeter
- Uses algorithm developed for Early Manifest Glaucoma Trial
- Designed to help identify clinically significant progression of visual field loss in patients with glaucoma
- Highlights changes from selected baseline examinations that are larger than typical clinical variability in patients with similar degrees of glaucoma.
- Identifies consistent and repeated patterns of loss
- Corrects for ocular media effects
- Analysis based upon detailed empirical knowledge of variability found at all stages of glucomatous visual field loss
- Can be used on full threshold (baseline only), SITA Standard, and SITA Fast strategies
- Visual fields that repeatedly and consistently show changes exceeding what is known to represent typical variability are identified as having “possible” or “likely” progression

GPA: Clinical Considerations
- Baseline is established
 - Either by machine or by operator
 - Machine picks two earliest similar strategies
- Small triangles on printout (following baseline) identify statistically significant change
- Open triangles
 - Denotes a point that has progressed at least one time
 - Identifies any point that has worsened by an amount that exceeds the variability expected in all but the most variable 5% (p<0.05) of glaucoma patients having
similar visual fields status. This symbol is shown if the change is greater than 95% of the variability seen in that exact test location in fields having a similar mean threshold deviation from normal values. This can occur on the first follow-up (after baseline) exam

- Half-filled triangle
 - Identifies points changing as described above (p<0.05) in two consecutive follow-up (after baseline) exams. (Possible Progression)

- Filled triangle
 - Identifies points changing as described above (p<0.05) in three consecutive follow-up (after baseline) exams. (Likely Progression)

GPA Alert: Possible progression, Likely Progression, and No Progression Detected

- Combines the knowledge of clinical variability with the demand that the change be consistent and repeatable.
- Judging progression should involve all clinical data
 - However, if solely using perimetric data, the significant change should be present in at least two follow-up tests and must be found consistently in the same area of the visual field
 - Before changing therapy based upon this information, care should be made to ensure that the baseline exams are appropriate and the follow-up exams are reliable.
- When significant degradation is present in the same three or more points (on the same side of the horizontal meridian) on two consecutive follow-up exams, the GPA software will alert you to “Possible Progression”. If this trend is present on three consecutive follow-up exams, the GPA software with alert you to “Likely Progression”
- On newest version, if none of the above criteria are met, the message “No Progression Detected” will be displayed. (The term, “Definite Progression” will never be displayed).

Visual Field Index (VFI) is a new summary measurement of the visual field status as a percent of a normal age-adjusted visual field.
- VFI is optimized for progression analysis
- It is less affected by cataract or media changes than earlier indices
- VFI is used to quantify the rate of progression where it is plotted relative to the patient age to calculate the rate of functional loss
- The VFI plot provides a linear regression analysis of the VFI over time
 - Minimum of 5 exams over 3 years is required to have VFI plot
 - This is the trend analysis
- An outstanding concept, but it ignores the fact that progression isn’t necessarily linear.

- Slope of Mean Deviation from all exams is determined using a regression analysis. This allows one to determine the rate of progression

In general, a total minimum of 4 exams (2 baseline and 2 follow-up exams) is required in order to judge “Possible Progression”. In order to get a message of “Likely Progression”, 5 exams (2 baseline and 3 follow-up) are necessary
Structural Testing: Photographs and Imaging Devices

- Using photographs to judge progression can be difficult with a steep learning curve.
- Subject to errors based upon observer as well as artifacts of camera and equipment
- Newer approaches use imaging devices and statistical analyses (HRT, GDx, OCT)
 - Two possible reasons for change on imaging devices
 - Error in acquisition, error in image registration, poor image quality/signal strength, cataract, inherent variability in measurement
 - True biological change
 - Differentiating one from the other is difficult

New Technologies for Measuring Progression: Guided Progression Analysis (GPA) for Structural Tests